

© 2017, ECDL Foundation. This Quick Reference may be used by candidates to assist in preparation for this ECDL module test. ECDL Foundation does not warrant that use of this guide will ensure passing of the
test. Tool and language-specific details are correct as of April 2017.

Certification Test Goals

This module sets out essential concepts and skills relating to the ability to use computational
thinking and coding to create simple computer programs.

Successful candidates will be able to:

 Understand key concepts relating to computing and the typical activities involved in
creating a program.

 Understand and use computational thinking techniques like problem decomposition,
pattern recognition, abstraction and algorithms to analyse a problem and develop
solutions.

 Write, test and modify algorithms for a program using flowcharts and pseudocode.

 Understand key principles and terms associated with coding and the importance of
well-structured and documented code.

 Understand and use programming constructs like variables, data types, and logic in
a program.

 Improve efficiency and functionality by using iteration, conditional statements,
procedures and functions, as well as events and commands in a program.

 Test and debug a program and ensure it meets requirements before release.

1 Computing Terms

1.1 Key Concepts

1.1.1 Define the term computing.

 Performing calculations or processing data,
especially using computer systems.

1.1.2 Define the term computational thinking.

 The process of analysing problems and
challenges and identifying possible solutions to
solve them.

1.1.3 Define the term program.

 Sets of sequenced steps, known as an
algorithms, expressed in a form that can be
understood and executed by a computer.

1.1.4 Define the term code.

 The text of a computer program, written as a
series of instructions for a computer to execute.

1.1.4 Distinguish between source code, machine code.

 Source code is code written by a programmer
that humans can read and understand.

 Machine code is a series of 1’s and 0’s created
by a computer from source code that can be
understood by the computers’ electronic circuits.

1.1.5 Understand the terms program description and
specification.

 A program description explains what a program
is designed to do and how it will work.

 A program specification is a set of requirements
outlining what a program will do.

1.1.6 Recognise typical activities in the creation of a
program:

 Analysis - This involves clearly defining the
problems that need to be solved.

 Design - This involves working out the
algorithms to solve the problems.

 Programming - This involves writing the
program by writing the algorithms in the chosen
computer language.

 Testing - This involves checking that the
program does what it was intended to do.

 Enhancement - This involves adding new
features to improve performance or functionality,
or to extend the program’s use to different
situations.

1.1.7 Understand the difference between a formal
language and a natural language.

 A formal language is strictly structured, with
exact and precise rules - examples include
mathematics, chemical equations and computer
programs.

 A natural language typically needs context to be
clearly understood - examples include spoken
languages like English, French or Chinese.

2 Computational Thinking Methods

2.1 Problem Analysis

2.1.1 Outline the typical methods used in computational
thinking:

 Decomposition - The process of breaking down
a complex problem into smaller, simpler, easier
to understand problems.

 Pattern recognition - The process of finding
patterns or repetition within complex problems
or among smaller related problems.

 Abstraction - The process of extracting the most
important or defining features from a problem or
challenge.

 Algorithms - These are well-defined instructions
in the form of steps, designed to solve problems
or successfully complete tasks.

2.1.2 Use problem decomposition to break down data,
processes, or a complex problem into smaller
parts.

 For example, when organising a party venue,
you can use problem decomposition to break
the problem down into smaller parts such as
selecting a suitable venue, a date and a budget
and checking the availability and cost.

2.1.3 Identify patterns among small, decomposed
problems.

 For example, when creating party invitations,
you can identify a pattern in the use of the same
design and text across all of the party invitations
with a unique name and address inserted.

2.1.4 Use abstraction to filter out unnecessary details
when analysing a problem.

 For example, when organising a party you can
use abstraction to filter out unnecessary details
such as the colour of the decorations so only
important details remain such as the date, the
venue, the guests, and the entertainment.

2.1.5 Understand how algorithms are used in
computational thinking.

 The decomposition of a problem into smaller
parts leads to the development of one or more
algorithms.

 Algorithms are collections of steps that can be
followed in order to solve a problem.

 For example, an algorithm for organising a party
venue could include the following steps:

o pick a venue

o pick a date

o pick a budget

o check if the venue is available on
the chosen date

o check if the venue is in budget

o pick a new venue or date if the
venue isn’t available or in budget

o book the venue if it is available
and in budget

2.2 Algorithms

2.2.1 Define the programming construct term sequence.

 A sequence is a number of simple instructions
that need to be carried out one after the other.

2.2.1 Outline the purpose of sequencing when
designing algorithms.

 Sequencing ensures that all the required actions
to accomplish a task or set of tasks are
performed in the right order.

2.2.2 Recognise possible methods for problem
representation like:

 Flowcharts - A pictorial way of representing the
steps in an algorithm with arrows showing the
progression from one step to the next.

 Pseudocode - An informal way of representing
an algorithm using written instructions in a
natural language, for example English.

2.2.3 Recognise flowchart symbols like:

 Start/stop -

 Process -

 Decision -

 Input/output -

 Connector -

 Arrow -

2.2.4 Outline the sequence of operations represented by
a flowchart.

 Start/stop - In a flowchart an algorithm starts at
the Start box and runs until it reaches a Stop
box.

 Process - Contains simple instructions to do
something. For example, the instruction could
be ‘put on warm clothes’.

 Decision - Allows for a choice in an algorithm.
For example, if the answer to a question is ‘yes’
one route is taken and if the answer is ‘no’ the
other route is taken.

 Input/output - Allows for an interaction with the
world outside the computer. For example, an
input could be a temperature reading from a
sensor and an output could be turning off a
heater.

 Connector - Connects two flow lines to show a
jump from one point in the process flow to
another. For example when answering a
‘Yes/No’ question.

 Arrow - Connects two shapes to show the
direction of flow in an algorithm. For example,
instructions in a sequence will have arrows
between them.

Computing Quick Reference
This quick reference is for Python 3.

Ref: ECDL Computing - QRG - V1.0

2.2.4 Outline the sequence of operations represented by
pseudocode.

 Pseudocode informally describes the sequence
of operations in an algorithm using informal
natural language with some of the structure and
conventions of programming languages.

2.2.5 Write an accurate algorithm based on a
description using a technique like: flowchart

 For example, the following flowchart describes
an algorithm for baking a cake:

2.2.5 Write an accurate algorithm based on a
description using a technique like: pseudocode

 For example, the following pseudocode
describes an algorithm for baking a cake:

Set oven to 1800C

Mix ingredients

Put cake in oven

Check if cake is baked and if it isn’t

 Wait

Take cake out of oven

STOP

2.2.6 Fix errors in an algorithm like:

 Missing program element - To fix this type of
error in an algorithm, identify and then add the
missing steps.

 Incorrect sequence - To fix this type of error in
an algorithm, identify any instructions that are
not in the correct sequence and then move them
to the correct order.

 Incorrect decision outcome - To fix this type of
error in an algorithm, identify any incorrect
decision outcomes and then include a test to
check if certain conditions are met.

3 Starting to Code

3.1 Getting Started

3.1.1 Describe the characteristics of well-structured and
documented code like:

 Indentation - This involves indenting blocks of
code to help people read and understand the
code more easily.

 Appropriate comments - This involves
describing the purpose of the code in natural
language to help people understand what each
section of code is doing.

 Descriptive naming - This involves giving
meaningful names to items, functions and
procedures to help people understand their
purpose.

3.1.2 Use simple arithmetic operators to perform
calculations in a program:

+ addition 1+2

3

- subtraction 2-1

1

/ division 4/2

2

* multiplication 1*2

2

3.1.3 Understand the precedence of operators and
the order of evaluation in complex expressions.

 The precedence of operators determines the
order in which operators are applied in
complex expressions.

 The order of evaluation of operators in
complex expressions is multiplication,
division, addition, subtraction, comparison,
and logical.

3.1.3 Understand how to use parenthesis to structure
complex expressions.

 Parenthesis are used in complex expressions
to indicate which part of the expression
should be calculated first.

 The expression inside the parenthesis is
calculated first.

 For example, 10-(6-4) = 8.

3.1.4 Understand the term parameter.

 A parameter is a special type of variable used in
subroutines.

 You can add multiple parameters to a
subroutine by separating them with commas.

 Parameters are the names used to describe the
information passed into subroutines while the
actual values are called arguments.

3.1.4 Outline the purpose of parameters in a program.

 Parameters are used in subroutines to influence
what they do by passing information into them.

3.1.5 Define the programming construct term comment.

 A comment is a piece of text that explains what
some part of the code does.

3.1.5 Outline the purpose of a comment in a program.

 Comments are used to help people understand
what is happening within a program.

3.1.6 Use comments in a program.

 To add a comment to a program, you use the #
symbol followed by the comment text.

 The comment is considered the text after the #
until the end of the line.

 For example

This is a comment

3.2 Variables and Data Types

3.2.1 Define the programming construct term variable.

 A variable is used to represent a piece of data.

 It is like a placeholder for an actual value.

 It can hold a value and retrieve it for use later.

3.2.1 Outline the purpose of a variable in a program.

 Variables are used so that data can be used
several times in a program.

3.2.2 Define and initialise a variable.

 Defining a variable means defining what data
type the variable will hold. Data types are used
to determine how to store data in the computer’s
memory and what operations can be carried out
on the data.

 Initialising a variable means assigning an initial
value to a variable. This must be done before
you can use the variable.

 For example, a variable named ‘price’ can be
defined with the data type integer and assigned
an initial value of 0 as follows:

price = int(0)

3.2.3 Assign a value to a variable.

 Assigning a value to a variable means
specifying what value the variable will represent.

 You can update the value stored in a variable by
assigning a new value to the variable.

 For example the variable ‘price’ can be assigned
the value 7 as follows:

price = 7

3.2.4 Use appropriately named variables in a program
for calculations, storing values.

 Variables should have easy to read, descriptive
names that start with a letter and avoid reserved
words.

 Some good examples include: counter,
weight, age, height

 And some weak examples include: x, y, my,
eg_3, 2_var, var_1,

3.2.5 Use data types in a program: string.

 A string data type is used for text, for example
hello world.

 A string data type can be defined using the
syntax

string1 = str(“string”)

 For example

yourName = str(“Sam”)

3.2.5 Use data types in a program: character

 The character data type is used in some
programming languages but not in Python.

 Python uses the string data type instead of the
character data type.

3.2.5 Use data types in a program: integer.

 An integer data type is used for whole numbers,
for example 1 and 67.

 An integer data type can be defined using the
syntax

integer1 = int(1)

 For example

yourAge = int(14)

3.2.5 Use data types in a program: float.

 A float data type is used for decimal numbers,
for example 1.0 and 67.9.

 A float data type can be defined using the
syntax

float1 = float(1.0)

 For example

yourHeight = float(160.5)

3.2.5 Use data types in a program: Boolean

 A Boolean data type is used for True or False
values.

 A Boolean data type of True can be defined
using the syntax

Boolean1 = True

 For example

yourHeight = True

 A Boolean data type of false can be defined
using the syntax

Boolean1 = False

 For example

yourHeight = False

3.2.6 Use an aggregate data type in a program like:
array.

 The array aggregate data type is used in some
other programming languages but not in Python.

 Python uses the aggregate data type ‘list’
instead of ‘array’.

3.2.6 Use an aggregate data type in a program like: list.

 A list aggregate data type is used to hold
multiple items known as elements.

 Elements are referenced by numbers starting
from zero.

 A list can be modified by adding items, removing
items or changing items.

 The syntax is

List1 = [element0, element1]

 For example

myPets = [“cat”, “dog”]

3.2.6 Use an aggregate data type in a program like:
tuple.

 A tuple aggregate data type is like a list, except
once created, it can’t be modified, unless you
assign a new variable to the tuple which then
rewrites the tuple contents.

 The syntax is

Tuple1 = (element0, element1)

 For example

myPets = (“pig”, “hen”)

3.2.7 Use data input from a user in a program.

 You can request a user to input data while a
program is running using the input statement.

 The syntax is

input()

 For example

name = input(“your name is?”)

3.2.8 Use data output to a screen in a program.

 You can output data to a screen in a program
using the print statement.

 The syntax is

print()

 For example

print(“Hello, world!”)

Ref: ECDL Computing - QRG - V1.0

4 Building using Code

4.1 Logic

4.1.1 Define the programming construct term logic test.

 A logic test is a Boolean expression that results
in a Boolean value that is either True or False.

4.1.1 Outline the purpose of a logic test in a program.

 A logic test is used as a way to test if certain
conditions exist in order to control what happens
next in a program.

4.1.2 Recognise types of Boolean logic expressions to
generate a true or false value like:

== Equals

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to - Python uses != instead

= Equals - Python uses == instead

AND

Combines two Boolean values and
gives a result of True if both values
are True, otherwise gives a result of
False. Note in python this is written as
lower case.

OR Combines two Boolean values and
gives a result of True if either one or
both values are True, otherwise gives
a result of False. Note in python this is
written as lower case.

NOT Converts a single Boolean value from
True to False, or False to True. Note
in python this is written as lower case.

4.1.3 Use Boolean logic expressions in a program.

== 1 == 1

True

!= 1 != 2

True

> 1 > 2

False

< 1 < 2

True

>= 1 >= 2

False

<= 1 <= 2

True

<> Python uses != instead

= Python uses == instead

AND

True and True

True

True and False

False

False and True

False

False and False

False

OR True or True

True

True or False

True

False or True

True

False or False

False

NOT not True

False

not False

True

4.2 Iteration

4.2.1 Define the programming construct term loop.

 A loop is a piece of code that runs repeatedly
under certain conditions – either a specified
number of times or until a specified condition is
met.

4.2.1 Outline the purpose and benefit of looping in a
program.

 Looping, also referred to as iteration, saves
programming time and results in shorter code by
repeating steps.

4.2.2 Recognise types of loops used for iteration: for

 A for loop is a type of loop that executes a
sequence of statements a specified number of
times.

 A for loop is used when the number of loops
needed is already known.

4.2.2 Recognise types of loops used for iteration: while.

 A while loop is a type of loop that tests a
Boolean expression and executes a statement
or group of statements as long as the Boolean
expression is true.

 A while loop is used when the number of loops
required depends on certain conditions being
met.

4.2.2 Recognise types of loops used for iteration:
repeat.

 A repeat loop is used in some other
programming languages but not Python.

 Python uses the ‘While’ loop instead.

4.2.3 Use iteration (looping) in a program like: for.

 The for loop syntax is

for variable_name in range ():

 statement(s)

 For example:

for count in range(10):

 print(“*”)

4.2.3 Use iteration (looping) in a program like: while.

 The while loop syntax is

while expression:

 statement(s)

 For example:

number = 10

 while number > 1:

 print(number)

 number = number - 1

4.2.3 Use iteration (looping) in a program like: repeat.

 Python doesn’t use the repeat loop.

4.2.4 Understand the term infinite loop.

 An infinite loop is a type of while loop where the
logic test is always true, so the loop will repeat
forever.

 An infinite loop can cause a program to fail or in
some cases it can be used on purpose so that
the program runs indefinitely.

4.2.5 Understand the term recursion.

 Recursion is the process of a subroutine
dividing a problem into simpler parts and calling
itself to solve those simpler parts.

4.3 Conditionality

4.3.1 Define the programming construct term
conditional statement.

 A conditional statement is used to evaluate an
expression as True or False. The outcome, a
True or False value, determines what is done
next in a program.

4.3.1 Outline the purpose of conditional statements in a
program.

 A conditional statement is used in a program to
determine what happens next in the program
depending on the result of the evaluation of the
expression.

4.3.2 Use IF…THEN...ELSE conditional statements in a
program.

 An If conditional statement tests a Boolean
expression. If the Boolean expression is True, it
executes a statement.

 The syntax is

if expression:

 statement if True

 For example:

if 100 < 250:

 print (“Yes”)

4.3.2 Use IF…THEN...ELSE conditional statements in a
program.

 An Else conditional statement tests a Boolean
expression and if the Boolean expression is
true, it executes a statement and if the Boolean
expression is false, it executes a different
statement.

 The syntax is

if expression:

 statement if True

else:

 statement if False

 For example:

if 100 < 250:

 print (“Yes”)

else:

 print (“No”)

4.4 Procedures and Functions

4.4.1 Understand the term procedure.

 A Procedure is a subroutine that executes an
action, but does not return a value.

 Python includes pre-defined procedures, for
example print().

 Or you can create your own procedures known
as user-defined or custom-made.

4.4.1 Outline the purpose of a procedure in a program.

 Procedures enable code to be reused, which
reduces programming time and makes code
shorter and easier to read.

 If changes are required they only have to be
implemented once in the procedure code and
the updates are applied automatically wherever
the procedure is used in the program.

4.4.2 Write and name a procedure in a program.

 When you write and name a procedure you can
use it anywhere in the program.

 To write and name a procedure, include its
name and brackets – this is known as executing
or calling a procedure.

 The syntax for writing, naming and calling a
procedure is

def procedure_name():

 statement(s)

procedure_name()

 For example:

def line_vertical():

 for count in range (10):

 print(“*”)

line_vertical()

4.4.3 Understand the term function.

 A function is a subroutine that calculates a value
for the program that contains it.

 Python includes pre-defined functions, for
example, input().

 Or you can create your own functions known as
user-defined or custom-made.

4.4.3 Outline the purpose of a function in a program.

 Functions enable code to be reused, which
reduces programming time and makes code
shorter and easier to read.

 If changes are required they only have to be
implemented once in the function code and the
updates are applied automatically wherever the
function is used in the program.

4.4.4 Write and name a function in a program.

 When you write and name a function you can
use it anywhere in the program.

 To write and name a function, include its name
and brackets – this is known as executing or
calling a function.

 The syntax for writing, naming and calling a
function is

def function_name():

 statement(s)

 return statement

function_name()

 For example:

y = int(input("Enter value "))

answer= int(0)

def square(y):

 answer = y*y

 return answer

answer = square(y)

print(answer)

4.5 Events and Commands

4.5.1 Understand the term event.

 Events are actions that are triggered by an
action such as a user pressing a key press, or a
mouse click, or a button click. They can also be
triggered by a timer.

4.5.1 Outline the purpose of an event in a program.

 Events are used to impact the flow of a program
and to trigger something happening.

4.5.2 Use event handlers like: mouse click, keyboard
input, button click, timer.

 An event handler is a piece of code designed to
do something once an event has been triggered.

 Mouse click - a user clicking the mouse.

 Keyboard input - a user pressing a keyboard
button.

Ref: ECDL Computing - QRG - V1.0

 Button click - an on-screen button being
activated.

 Timer - a predefined time triggering an event.

4.5.3 Use available generic libraries.

 A library is a useful collection of pre-defined
procedures and functions that come with the
programming language.

 Python refers to generic libraries as standard
libraries.

 To use a Python standard library in a program it
must be imported near the start of the program.

 You can import an entire library using the syntax

import library_name

 Or you can import specific functions from a
library using the syntax

from library_name import

function_name

4.5.3 Use available generic libraries like: math.

 The math library contains lots of mathematical
functions.

 The sqrt function calculates the square root of a
number. For example:

import math

print (math.sqrt(4))

 The factorial function calculates the factorial of a
number. For example:

from math import factorial

print (factorial(4))

 The pow function raises a number to a power.
For example to raise 10 to power 3:

from math import pow

print (pow(10,3))

4.5.3 Use available generic libraries like: random.

 The random library contains functions for
generating random numbers.

 The choice function picks one random item from
a list. For example:

import random

fruit = [“apple”, “grapefruit”]

print(random.choice (fruit))

 The randit function picks a random integer from
between two specified integers. For example:

from random import randit

print(“roll the dice 10 times”)

for i in range (0,10):

 print(randit(1,6))

4.5.3 Use available generic libraries like: time.

 The time library contains lots of functions related
to time.

 The strftime function takes a 'time object' and
converts it to a string. It contains many
formatting options for time.

 The gmtime function gives a 'time object' for the
current time of day.

 For example:

from time import strftime, gmtime

print (strftime(“%x”, gmtime()))

5 Test, Debug and Release

5.1 Run, Test and Debug

5.1.1 Understand the benefits of testing and debugging
a program to resolve errors.

 Testing and debugging a program to resolve
errors ensures that the program is working as
intended before release.

5.1.2 Understand types of errors in a program like:

 Syntax error - This is an error due to a construct
in the programming language being written
incorrectly. Examples include incorrect syntax,
omission of a required colon or bracket,
misspelling a keyword, or the incorrect format
used for numbers.

 Logic error - This is an error due to flaws in the
logic where the program may operate correctly
but doesn’t do what is required.

5.1.3 Run a program.

 Open a program.

 Click Run in the menu bar and click Run
Module.

 Or press F5 on the keyboard.

5.1.4 Identify and fix a syntax error in a program like:
incorrect spelling, missing punctuation.

 It is important to check your code for incorrect
spelling and missing punctuation.

 In the following example, ‘print’ is spelt
incorrectly and there are colons missing after
the ‘if’ and ‘else’ statements.

myAge = int(14)

if(myAge > 16)

 prinr("You can go!")

else

 prinr("You are too young.")

5.1.5 Identify and fix a logic error in a program like:
incorrect Boolean expression, incorrect data type.

 It is important to check your code for incorrect
Boolean expressions and incorrect data types.

 In the following example, the Boolean
expression is incorrect. The Boolean expression
should be ‘greater than’, rather than ‘less than’.
And the ‘myAge’ data type is incorrect. The data
type should be ‘int’, rather than ‘str’.

myAge = str(14)

if(myAge < 16):

 print("You are old enough")

else:

 print("You are too young")

5.2 Release

5.2.1 Check your program against the requirements of
the initial description.

 Before release, it is important to systematically
test your program against the requirements of
the initial description, documented in the
specification document.

5.2.2 Describe the completed program, communicating
purpose and value.

 When you are describing the completed
program be aware of the audience and what is
relevant to them.

 When communicating purpose explain what
problem the program solves. It can also be
useful to explain what problems were beyond
the scope of the project.

 When communicating value highlight what is
new and unique about the program and try to
support your claims with facts and figures. For
example, the program might save the end user
time or it might save the client money.

5.2.3 Identify enhancements, improvements to the
program that may meet additional, related needs.

 Examine how enhancements and improvements
to the program such as, small additions could
generalise the program and make it useful in a
wider context to meet additional or related
needs.

 For example, you might localise the program for
different countries, adapt it for different systems
or modify it for different uses.

For more information,
visit: www.ecdl.org

