5.2.1 Vzdělávací obor - Matematika a její aplikace - Číslo a proměnná 2. stupeň

od Průvodce upraveným RVP ZV

                                                                                                                                                                  
Úrovně očekávaných výstupů
                                                                                                                                                                  
 

Číslo a proměnná 2. stupeň

žák

M-9-1-01 provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu
M-9-1-02 zaokrouhluje a provádí odhady s danou přesností, účelně využívá kalkulátor
M-9-1-03 modeluje a řeší situace s využitím dělitelnosti v oboru přirozených čísel
M-9-1-04 užívá různé způsoby kvantitativního vyjádření vztahu celek – část (přirozeným číslem, poměrem, zlomkem, desetinným číslem, procentem)
M-9-1-05 řeší modelováním a výpočtem situace vyjádřené poměrem; pracuje s měřítky map a plánů
M-9-1-06 řeší aplikační úlohy na procenta (i pro případ, že procentová část je větší než celek)
M-9-1-07 matematizuje jednoduché reálné situace s využitím proměnných; určí hodnotu výrazu, sčítá a násobí mnohočleny, provádí rozklad mnohočlenu na součin pomocí vzorců a vytýkáním
M-9-1-08 formuluje a řeší reálnou situaci pomocí rovnic a jejich soustav
M-9-1-09 analyzuje a řeší jednoduché problémy, modeluje konkrétní situace, v nichž využívá matematický aparát v oboru celých a racionálních čísel

Minimální doporučená úroveň pro úpravy očekávaných výstupů v rámci podpůrných opatření:

žák

M-9-1-01p písemně sčítá, odčítá, násobí a dělí víceciferná čísla, dělí se zbytkem
M-9-1-01p pracuje se zlomky a smíšenými čísly, používá vyjádření vztahu celek – část (zlomek, desetinné číslo, procento)
M-9-1-01p čte desetinná čísla, zná jejich zápis a provádí s nimi základní početní operace
M-9-1-02p provádí odhad výsledku, zaokrouhluje čísla
M-9-1-02p píše, čte, porovnává a zaokrouhluje čísla v oboru do 1 000 000
M-9-1-05p používá měřítko mapy a plánu
M-9-1-06p řeší jednoduché úlohy na procenta
        -         zvládá orientaci na číselné ose

Poznámky k úpravám očekávaných výstupů a vzdělávacího obsahu

   V návaznosti na první stupeň se žáci postupně seznamují s dalšími přirozenými čísly. Zásadou je, aby se v číselných oborech orientovali, proto každý žák počítá v tom oboru, který je pro něj přijatelný a chápe ho (do 20, do 100, do 1000, atd.). Jednotlivé operace se neustále opakují, procvičují se pamětné spoje sčítání, odčítání, násobení, dělení v jednoduchých případech, algoritmy písemných operací podle možností žáků – ve většině případů s menšími čísly. Postupně se buduje pojem zlomku, nejprve jako části celku. Ve velké míře se využívá praktických činností, manipulace s předměty, pomůcek. Žáci počítají zlomek z čísla (dělením a násobením). Zavede se pojem desetinného zlomku, a na jeho základě desetinného čísla. Desetinná čísla vycházejí z praktických reprezentací, se kterými se žáci setkávají v běžném životě. Pozornost je třeba věnovat správnému čtení a zápisu desetinných čísel. Operace s desetinnými čísly se odvíjejí od schopnosti žáků provádět operace s čísly přirozenými. Pokud žák s LMP pochopí význam jedné setiny z celku, je možné pracovat s procenty a s jejich využitím v běžném životě (vycházet z vlastních zkušeností žáků s procenty). Procenta je třeba spojovat s posilováním finanční gramotnosti žáků s LMP a volit ukázky z této oblasti. Pokud jsou žáci schopni zaokrouhlovat čísla, využívají je k odhadu výsledku. Slovní úlohy se volí většinou jednoduché a to tak, aby žáci viděli potřebnost a smysluplnost řešení úloh.
   Jestliže jsou někteří žáci s LMP schopni postupného zobecňování, můžeme zavádět proměnnou veličinu, výrazy číselné i výrazy s proměnnou v jednoduchých případech.

Indikátory očekávaných výstupů

Očekávané výstupy – 2. stupeň

Indikátory

žák

žák

- provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu

1. provádí základní početní operace se zlomky a desetinnými čísly
2. dodržuje pravidla pro pořadí početních operací v oboru celých a racionálních čísel, využívá vlastnosti operací sčítání a násobení (komutativnost, asociativnost, distributivnost) při úpravě výrazů
3. vyznačí na číselné ose racionální číslo a číslo k němu opačné
4. zná zpaměti druhé mocniny celých čísel od 1 do 10 a využívá je při výpočtech (i ke stanovení odpovídajících druhých odmocnin)
5. určí rozvinutý zápis přirozeného čísla v desítkové soustavě
6. provádí základní úpravy zlomků (rozšiřuje a krátí zlomek, vyjádří zlomek v základním tvaru, převádí zlomek na smíšené číslo a naopak)
7. určí absolutní hodnotu celého čísla

- zaokrouhluje a provádí odhady s danou přesností, účelně využívá kalkulátor

1. zaokrouhluje čísla s danou přesností
2. využívá pro kontrolu výsledku odhad
3. účelně a efektivně využívá kalkulátor

- modeluje a řeší situace s využitím dělitelnosti v oboru přirozených čísel

1. rozlišuje pojmy prvočíslo a číslo složené; společný dělitel a společný násobek
2. využívá kritéria dělitelnosti (2, 3, 5, 10)
3. rozloží dvojciferné číslo na součin prvočísel

- užívá různé způsoby kvantitativního vyjádření vztahu celek – část (přirozeným číslem, poměrem, zlomkem, desetinným číslem, procentem)

1. užívá různé způsoby kvantitativního vyjádření vztahu celek – část: přirozeným číslem, poměrem, zlomkem, desetinným číslem, procentem

- řeší modelováním a výpočtem situace vyjádřené poměrem; pracuje s měřítky map a plánů

1. využívá daný poměr v reálných situacích
2. stanoví poměr ze zadaných údajů
3. využívá měřítko mapy nebo plánu k výpočtu

- řeší aplikační úlohy na procenta (i pro případ, že procentová část je větší než celek)

1. určí počet procent, je-li dána procentová část a základ
2. určí procentovou část, je-li dán procentový počet a základ
3. určí základ, je-li dán procentový počet a procentová část

- matematizuje jednoduché reálné situace s využitím proměnných; určí hodnotu výrazu, sčítá a násobí mnohočleny, provádí rozklad mnohočlenu na součin pomocí vzorců a vytýkáním

1. vypočte hodnotu výrazu pro dané hodnoty proměnných
2. využívá při úpravě výrazů vytýkání a vzorce (a + b)2, (a – b)2, a2 – b2
3. vybere odpovídající výraz, který popisuje jednoduchou reálnou situaci

- formuluje a řeší reálnou situaci pomocí rovnic a jejich soustav

1. vyřeší rovnici a soustavu dvou jednoduchých lineárních rovnic pomocí ekvivalentních úprav  
2. ověří správnost řešení slovní úlohy

- analyzuje a řeší jednoduché problémy, modeluje konkrétní situace, v nichž využívá matematický aparát v oboru celých a racionálních čísel

1. řeší jednoduché úlohy v oboru celých čísel
2. popíše konkrétní situace s využitím racionálních čísel

 

Očekávané výstupy v RVP ZŠS (Číslo a početní operace)

žák by měl

  • psát, číst a používat čísla v oboru do 100, numerace do 1000 po 100
  • orientovat se na číselné ose
  • sčítat a odčítat písemně dvojciferná čísla do 100 bez přechodu přes desítku s použitím názoru
  • používat násobkové řady 2, 5, 10 s pomocí tabulky
  • umět řešit praktické početní příklady a jednoduché slovní úlohy
  • pracovat s kalkulátorem
RVP ZV
Pohled byl zobrazen 5974x od 9 prosinec 2015 do 6 srpen 2020